Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
2022 International Conference on Information Technology Research and Innovation, ICITRI 2022 ; : 1-5, 2022.
Article in English | Scopus | ID: covidwho-2191887

ABSTRACT

Drugs are generally designed for a specific target protein. Recent studies have demonstrated the capability of deep learning-based models to accelerate and cheapen the drug development process. The proposed deep learning models can generate novel molecules with optimized drug-like properties. However, the properties addressed are often limited and may be misleading. This is because they do not reflect the complete information about the binding affinity of the designed drug and the target protein. In this work, we exploit the state-of-The-Art progress made in drug-Target-Affinity (DTA) prediction to assess the binding affinity of drugs generated by a developed molecular generator against the corona-virus main protease (SARS-CoV-2 Mpro). The molecular generator is a recurrent neural network-based model, while the DTA predictor is a graph neural network (GNN), famously known as GraphDTA. We train the molecular generator using reinforcement learning (RL) to optimize the GraphDTA-predicted score. As this is the first benchmark of this kind (to the best of our knowledge), we report our benchmarking results;of 1.79% desirability;with the hope of motivating future improvements in this regard. © 2022 IEEE.

2.
Comb Chem High Throughput Screen ; 25(4): 634-641, 2022.
Article in English | MEDLINE | ID: covidwho-1817778

ABSTRACT

BACKGROUND: Drug development requires a lot of money and time, and the outcome of the challenge is unknown. So, there is an urgent need for researchers to find a new approach that can reduce costs. Therefore, the identification of drug-target interactions (DTIs) has been a critical step in the early stages of drug discovery. These computational methods aim to narrow the search space for novel DTIs and to elucidate the functional background of drugs. Most of the methods developed so far use binary classification to predict the presence or absence of interactions between the drug and the target. However, it is more informative but also more challenging to predict the strength of the binding between a drug and its target. If the strength is not strong enough, such a DTI may not be useful. Hence, the development of methods to predict drug-target affinity (DTA) is of significant importance Method: We have improved the GraphDTA model from a dual-channel model to a triple-channel model. We interpreted the target/protein sequences as time series and extracted their features using the LSTM network. For the drug, we considered both the molecular structure and the local chemical background, retaining the four variant networks used in GraphDTA to extract the topological features of the drug and capturing the local chemical background of the atoms in the drug by using BiGRU. Thus, we obtained the latent features of the target and two latent features of the drug. The connection of these three feature vectors is then inputted into a 2 layer FC network, and a valuable binding affinity is the output. RESULT: We used the Davis and Kiba datasets, using 80% of the data for training and 20% of the data for validation. Our model showed better performance when compared with the experimental results of GraphDTA Conclusion: In this paper, we altered the GraphDTA model to predict drug-target affinity. It represents the drug as a graph and extracts the two-dimensional drug information using a graph convolutional neural network. Simultaneously, the drug and protein targets are represented as a word vector, and the convolutional neural network is used to extract the time-series information of the drug and the target. We demonstrate that our improved method has better performance than the original method. In particular, our model has better performance in the evaluation of benchmark databases.


Subject(s)
Drug Development , Neural Networks, Computer , Amino Acid Sequence , Drug Interactions , Molecular Structure
3.
J Cheminform ; 14(1): 14, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1741955

ABSTRACT

MOTIVATION: Drug-target binding affinity (DTA) reflects the strength of the drug-target interaction; therefore, predicting the DTA can considerably benefit drug discovery by narrowing the search space and pruning drug-target (DT) pairs with low binding affinity scores. Representation learning using deep neural networks has achieved promising performance compared with traditional machine learning methods; hence, extensive research efforts have been made in learning the feature representation of proteins and compounds. However, such feature representation learning relies on a large-scale labelled dataset, which is not always available. RESULTS: We present an end-to-end deep learning framework, ELECTRA-DTA, to predict the binding affinity of drug-target pairs. This framework incorporates an unsupervised learning mechanism to train two ELECTRA-based contextual embedding models, one for protein amino acids and the other for compound SMILES string encoding. In addition, ELECTRA-DTA leverages a squeeze-and-excitation (SE) convolutional neural network block stacked over three fully connected layers to further capture the sequential and spatial features of the protein sequence and SMILES for the DTA regression task. Experimental evaluations show that ELECTRA-DTA outperforms various state-of-the-art DTA prediction models, especially with the challenging, interaction-sparse BindingDB dataset. In target selection and drug repurposing for COVID-19, ELECTRA-DTA also offers competitive performance, suggesting its potential in speeding drug discovery and generalizability for other compound- or protein-related computational tasks.

4.
Math Biosci Eng ; 19(4): 3269-3284, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1667425

ABSTRACT

Research on the relationship between drugs and targets is the key to precision medicine. Ion channel is a kind of important drug targets. Aiming at the urgent needs of corona virus disease 2019 (COVID-19) treatment and drug development, this paper designed a mixed graph network model to predict the affinity between ion channel targets of COVID-19 and drugs. According to the simplified molecular input line entry specification (SMILES) code of drugs, firstly, the atomic features were extracted to construct the point sets, and edge sets were constructed according to atomic bonds. Then the undirected graph with atomic features was generated by RDKit tool and the graph attention layer was used to extract the drug feature information. Five ion channel target proteins were screened from the whole SARS-CoV-2 genome sequences of NCBI database, and the protein features were extracted by convolution neural network (CNN). Using attention mechanism and graph convolutional network (GCN), the extracted drug features and target features information were connected. After two full connection layers operation, the drug-target affinity was output, and model was obtained. Kiba dataset was used to train the model and determine the model parameters. Compared with DeepDTA, WideDTA, graph attention network (GAT), GCN and graph isomorphism network (GIN) models, it was proved that the mean square error (MSE) of the proposed model was decreased by 0.055, 0.04, 0.001, 0.046, 0.013 and the consistency index (CI) was increased by 0.028, 0.016, 0.003, 0.03 and 0.01, respectively. It can predict the drug-target affinity more accurately. According to the prediction results of drug-target affinity of SARS-CoV-2 ion channel targets, seven kinds of small molecule drugs acting on five ion channel targets were obtained, namely SCH-47112, Dehydroaltenusin, alternariol 5-o-sulfate, LPA1 antagonist 1, alternariol, butin, and AT-9283.These drugs provide a reference for drug repositioning and precise treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning , Humans , Ion Channels , Neural Networks, Computer , SARS-CoV-2
5.
Netw Model Anal Health Inform Bioinform ; 11(1): 6, 2022.
Article in English | MEDLINE | ID: covidwho-1588689

ABSTRACT

The transmittable spread of viral coronavirus (SARS-CoV-2) has resulted in a significant rise in global mortality. Due to lack of effective treatment, our aim is to generate a highly potent active molecule that can bind with the protein structure of SARS-CoV-2. Different machine learning and deep learning approaches have been proposed for molecule generation; however, most of these approaches represent the drug molecule and protein structure in 1D sequence, ignoring the fact that molecules are by nature in 3D structure, and because of this many critical properties are lost. In this work, a framework is proposed that takes account of both tertiary and sequential representations of molecules and proteins using Gated Graph Neural Network (GGNN), Knowledge graph, and Early Fusion approach. The generated molecules from GGNN are screened using Knowledge Graph to reduce the search space by discarding the non-binding molecules before being fed into the Early Fusion model. Further, the binding affinity score of the generated molecule is predicted using the early fusion approach. Experimental result shows that our framework generates valid and unique molecules with high accuracy while preserving the chemical properties. The use of a knowledge graph claims that the entire generated dataset of molecules was reduced by roughly 96% while retaining more than 85% of good binding desirable molecules and the rejection of more than 99% of fruitless molecules. Additionally, the framework was tested with two of the SARS-CoV-2 viral proteins: RNA-dependent-RNA polymerase (RdRp) and 3C-like protease (3CLpro).

SELECTION OF CITATIONS
SEARCH DETAIL